Feb 05, 2022 Uncategorized

Calculus Worksheet assignment at an affordable cost

Description

Use the given graph of f to state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

(a)lim x → 2 f(x)



(b)

lim x → 2+ f(x)



(c)

lim x → 2 f(x)



(d)

f(2)



(e)

lim x → 4 f(x)



(f)

f(4)

For the function h whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

(a)lim x → −3 h(x)



(b)

lim x → −3+ h(x)



(c)

lim x → −3 h(x)



(d)

h(−3)



(e)

lim x → 0 h(x)



(f)

lim x → 0+ h(x)



(g)

lim x → 0 h(x)



(h)

h(0)



(i)

lim x → 2 h(x)



(j)

h(2)



(k)

lim x → 5+ h(x)



(l)

lim x → 5 h(x)

3.
For the function g whose graph is given, state the value of each quantity, if it exists. (If an answer does not exist, enter DNE.)

(a)lim t → 0 g(t)



(b)

lim t → 0+ g(t)



(c)

lim t → 0 g(t)



(d)

lim t → 2 g(t)



(e)

lim t → 2+ g(t)



(f)

lim t → 2 g(t)



(g)

g(2)



(h)

lim t → 4 g(t)

4.

Sketch the graph of the function.f(x) =

3 + xif x < −1
x2if −1 ≤ x < 1
2 − xif x ≥ 1
WebAssign PlotWebAssign Plot
WebAssign PlotWebAssign Plot

Use the graph to determine the values of a for which

lim x → a f(x)does not exist. (Enter your answers as a comma-separated list.)

a = 

5.

Sketch the graph of an example of a function f that satisfies all of the given conditions.lim x → 0f(x) = 1,lim x → 0+f(x) = 2,f(0) = −1

WebAssign PlotWebAssign Plot
WebAssign PlotWebAssign Plot

6.

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Use a table of values to estimate the value of the limit. If you have a graphing device, use it to confirm your result graphically.lim x→0

tan(4x)
tan(5x)

7.

[–/9 Points]DETAILSSCALCET8 2.2.009.

MY NOTES

For the function f whose graph is shown, state the following. (If an answer does not exist, enter DNE.)

(a)lim x → −7 f(x)



(b)

lim x → −3 f(x)



(c)

lim x → 0 f(x)



(d)

lim x → 6 f(x)



(e)

lim x → 6+ f(x)



(f) The equations of the vertical asymptotes.

x= (smallest value)
x=
x=
x= (largest value)